Sufentanil Sublingual Tablet 30mcg for Acute Traumatic Pain in the Emergency Department

2016 International Society for Burn Injuries

Karen DiDonato, MSN, RN

Disclosures

ARX-04 Development

U.S. Department of Defense aware of our development of small sublingual suferitanil tablet for post-operative pain

Requested durable, single-dose, easy to use applicator for field scenarios

Sublingual delivery of sufentanil offers potential for field-based, trauma-related analgesia

- Clinical data has shown greater pain intensity reduction in the first 4 hours compared to IV morphine¹
- Sublingual tissue perfusion maintained during shock²
- Eliminate needle-stick injury and associated risk of infection

Issues with other current treatments for battlefield trauma

- IM morphine less effective during shock due to peripheral vasoconstriction²
- Oral transmucosal fentanyl lozenge can take over 30 minutes to dissolve³
- Ketamine can produce dissociative effects⁴
- 1. Melson TI, Boyer DL, Minkowitz HS, et al (2014) Sufentanil sublingual microtablet system versus intravenous patient-controlled analgesia with morphine for postoperative pain control: a randomized, controlled trial. *Pain Pract* 14:679–688
 - de Moya, M. A. Shock. In Merck manual online, professional version. Retrieved from http://goo.gl/l8Xpa
- 3. Actiq package insert, Dec 2011, Cephalon, Inc.

3

4. Curran HV, Morgan C (2000) Cognitive, dissociative and psychotogenic effects of ketamine in recreational users on the night of drug use and 3 days later. Addiction 95:575-590

Burn Trauma

- Burns caused by thermal, chemical, electrical or radiation insults
- Burn injury is one of the most painful and disfiguring forms of trauma, as it affects the skin, the largest and most visible organ¹
 - Cell destruction of the skin layers occurs, resulting in damage to nerve fibers as well as depletion of fluid and elctrolytes²
- Type of tissue damage caused by burns generates unusually high levels of pain
 - Pain-generating mechanisms in burns include nociception, primary and secondary hyperalgesia and neuropathy³
 - Burn pain is long-lasting, often exceeding healing time
- Body's response to the burn injury is systemic, affecting all major systems of the body³
 - Arguably, most complicated form of acute pain to treat from any etiology²

[.] Norman, A and Judkins, K. Pain in the Patient with Burns, British Journal of Anaesthesia 2004;4(2):57-61.

Patterson, D and Sharar, Burn Pain, Em: Loeser, J. (Ed), Bonic's Management of Pain, 3rd ed. Philadelphia, PA: Lippincot, Williams and Wilkins, 2001, pp. 780-787

^{3.} Srinivasa, N. EVIDENCE FOR DIFFERENT MECHANISMS OF PRIMARY AND SECONDARY HYPERALGESIA FOLLOWING HEAT INJURY TO THE GLABROUS SKIN, Brain 1984;107:1179-1188

Pain Management of Burns: Initial Challenges (EMS/ED)

- Energy from the burn source instantly causes cell damage and release of inflammatory mediators¹
 - Release of endorphins and other neurotransmitters triggered by the injury can cause initial stress-induced analgesia²
- Hormonal response follows (elevated levels of cortisol, epinephrine, aldosterone), designed to protect vital organs²
 - Goal of analgesia at this juncture is to prevent undesired consequences of stress response
- Potent opioids cornerstone of pharmacologic pain control¹:
 - IV access difficult; painful, damaged tissue

5

- IM or SC avoided; unreliable absorption through soft tissue as a result of unpredictable fluid shifts and muscle perfusion
- Oral administration not recommended; possibility of GI dysfunction

Patterson, D and Sharar, Burn Pain, Em: Loeser, J. (Ed), Bonic's Management of Pain, 3rd ed. Philadelphia, PA: Lippincot, Williams and Wilkins, 2001, pp. 780-787 Norman, A and Judkins, K. Pain in the Patient with Burns, British Journal of Anaesthesia 2004;4(2):57-61.

Pain Management of Burns: Longer-Term Challenges (Hospital/Rehab)

- Burn patients at high risk for developing catheter-related sepsis¹
 - Physicians reluctant to maintain long-term IV access
- Drug pharmacokinetics can be altered in this population due to changes in volume distribution, unbound drug fraction and clearance half-life²
- Nature of standard burn care (ie debridement, grafting procedures, dressing changes) worsens whatever pain is present²
 - Wound care and therapies can generate pain that exceeds what patient experienced at the time of the injury
- Pain, in addition to being a source of outright suffering for patients, can interfere with wound treatment and lengthen hospitalization¹
- Well-documented association between insufficient pain relief and the onset of long-term psychiatric disorders such as PTSD and depression³

3. De Castro, R. et al. Pain Management in Burn Patients Rev Bras Anestesiol 2013; 63(1):149-158

^{1.} Patterson, D and Sharar, *Burn Pain*, Em: Loeser, J. (Ed), Bonic's Management of Pain, 3rd ed. Philadelphia, PA: Lippincot, Williams and Wilkins, 2001, pp. 780-787 2. Jellish et al. Effect of Topical Local Anesthetic Application to Skin Harvest Sites for Pain Management in Burn Patients Undergoing Skin-Grafting Procedures. Annals of Surgery 1999; 229:115-120

Rationale for Sublingual Sufentanil

Why Sublingual Sufentanil?

Sufentanil first synthesized by Janssen in 1974¹

First approved in US for IV delivery in 1984¹

- Approved for induction of anesthesia
- Later approved for epidural delivery as an analgesic in combination with bupivacaine¹

Sufentanil Physicochemical Properties

- Lipophilic: 1500 times more fat-soluble than morphine
- 20% non-ionized at physiological pH (fentanyl only 8%)
- Fat-soluble, non-ionized molecules = more rapid brain penetration than lipid-insoluble, charged molecules²

 Stanley TH, Egan TD, Van Aken H. A tribute to Dr Paul AJ Janssen: entrepreneur extraordinaire, innovative scientist, and significant contributor to anesthesiology. Anesth. Analgesia. 2008;106(2):451–462
 De Leon-Casasola et al. *Anesth Analg* 1996; 83:867-75.

Sufentanil Penetrates CNS Due to Lipophilicity $(t_{1/2}k_{e0})$

Commonly used IV opioids have delayed equilibration between plasma and CNS

- Morphine t_{1/2}k_{e0} = 2.8 hours¹
- Hydromorphone t_{1/2}k_{e0} = 46 min²

Sufentanil rapidly penetrates the CNS due to its very lipophilic nature

Sufentanil t_½k_{e0} = 6 min³

Lotsch et al., Anesthesiol 95:1329-38, 2001
 Shafer et al., Geriatric Anesthesiology. 2nd ed. New York, NY: Springer; Chapter 15:209–28, 2007
 Scott et al., Anesthesiol 74:34-42, 1991

Sufentanil: High Therapeutic Index and No Active Metabolites

Opioid	Therapeutic index [lethal dose (LD ₅₀)/effective dose (ED ₅₀) in animal studies]	
Meperidine	5 ¹	
Morphine	71 ¹	
Hydromorphone	232 ²	
Fentanyl	277 ¹	
Sufentanil	26,716 ¹	M6G M3G H6G
	Normeper	idine H3G
	Other Opioid Active Metabolites ³⁻⁷	
 Mather, Clin Exp Pharmacol Physiol 1995; 22:833. Kumar, Eur J Pharmacol 2008; 597:39 (ED50) and Purdue Pharma MSDS, 2009 (LD50) Clark et al., J Emerg Med 1995; 13:797–802 Smith et al., Clin J Pain 2011;27:824–38 Smith et al., Clin Exp Pharmacol Physiol 2000;27:524–8 Wright et al., Life Sci 2001;69:409–20 Smith, H. Mayo Clin Proc 2009;84(7):613-614 		

10

Sufentanil Pharmacokinetics

Sublingual delivery of sufentanil blunts C_{max} and extends plasma half-time compared to IV administration¹

ARX-04 30 mcg	IV	Sublingual
Bioavailability, %, mean	100	53
C _{max} pg/mL, mean	1074	63
CST _{¹/₂} h, median	0.1	2.3

CST $\frac{1}{2}$ = context-sensitive half-time (time from C_{max} to 50% of C_{max})

ARX-04 Clinical Studies

Study number	Phase #	Clintrials.gov NCT #	Patient population	Current status of study
SAP202	Phase 2 Dose-finding Pivotal	NCT01710345	Postoperative bunionectomy	Published 2014 ¹
SAP301	Phase 3 Pivotal	NCT02356588	Ambulatory surgery -Postoperative abdominal	Completed 2015 Manuscript Submitted
SAP302	Phase 3	NCT02447848	Trauma/injury in the ED	Enrollment complete; topline data released
SAP303	Phase 3	NCT02662556	Postoperative; elderly and organ impaired	Enrollment complete; data under analysis

1. Singla NK, et al. A dose-finding study of sufentanil sublingual microtablets for the management of postoperative bunionectomy pain. J. Trauma. Acute. Care. Surg. 2014;77(3 Suppl 2):S198–S203

ARX-04 Single-Dose Applicator

 Designed in collaboration with DoD (light-weight, extremeenvironment tested, easily handled with gloves)¹

SAP202 ARX-04 Dose-Finding Study

- Postoperative bunionectomy patients
- ARX-04 30 mcg dose demonstrated superiority over placebo within 30 minutes

1. Singla NK, et al. A dose-finding study of sufentanil sublingual microtablets for the management of postoperative bunionectomy pain. J. Trauma. Acute. Care. Surg. 2014;77(3 Suppl 2):S198–S203

SAP301: PID Over First Hour

Time (Minutes)

* p<0.01 ** p<0.001

15

SAP302: Emergency Dept. Trauma Pain

Study Design

Inclusion/Exclusion

Inclusion:

- 18 years and older
- moderate-to-severe acute pain due trauma or injury

Exclusion:

- Opioid-tolerant (>15mg oral MSO₄ equivalent daily)
- Dependent on supplemental oxygen
- Pregnant

Study Details

Multicenter, Single-Arm, Open-Label Study

ARX-04 30 mcg

Two Cohorts:

- Single-dose (after 1 hour, other opioids administered if needed)
- Multiple-dose (up to 5 hours; rescue opioids allowed if study drug not effective)

SAP302 *Outcome Measures*

Study sites

- Hennepin County Medical Center, Minneapolis, MN (James Miner, MD)
- Memorial Hermann-Memorial City Medical Center, Houston, TX (Harold Minkowitz, MD)
- Baylor College of Medicine, Ben Taub General Hospital, Houston, TX (Zubaid Rafique, MD)

Primary Endpoint

 Sum of the pain intensity difference to baseline over the first hour of treatment (SPID1)

Key Secondary Efficacy Endpoints

- PID assessments
- Patient and Healthcare Practitioner Global Assessment
- Use of rescue medication
- Drop-outs due to inadequate analgesia

Safety Endpoints

- Adverse Events
- Vital Signs
- Six-item Cognitive
 Screener
- Concomitant Medications

SAP302: Demographics (n=76)

Baseline characteristics

Category		Category	
Sex, male, %	61	BMI, %	
Age, years, mean	42	< 30kg/m ²	61
Race, %		<u>></u> 30kg/m ²	39
Caucasian	59	ASA Classification, %	
African American	34	1	61
Native American	7	2	33
Ethnicity, %		3	7
Hispanic/Latino	16	Baseline Pain	8.1/10

SAP302: Demographics (n=76)

Trauma presentation

Injury Type	Number	Percent Total
Fractures	25	32.9%
Sprains/strains	23	30.3%
Contusion/hematoma (soft tissue)	13	17.1%
Laceration	8	10.5%
Joint dislocation	4	5.3%
Burns	2	2.6%
Infections	1	1.3%

SAP302: Efficacy Combined Cohorts (n=76)

- Over 35% drop in pain intensity by 60 minutes¹
- A clinically significant drop in pain intensity when administering 0-10 point numerical rating scale (NRS) to measure pain is 1.3²

1. Mean reduction in pain intensity of 2.88 from a baseline of 8.08

2. Bijur, Polly E., et al.. Validation of a Verbally Administered Numerical Rating Scale of Acute Pain four Use in the Emergency Department. Academy Emergency Medicine. 2003;10: 390-392

SAP302: Efficacy Multiple-Dose Cohort (n=36)

- Re-dosing allowed hourly if needed
- 75% of patients did not require re-dosing

SAP302: Efficacy Use of Rescue

Low rate of rescue opioid usage

	Patients Requiring Use of Rescue Opioid		
Study Period	Single-Dose Cohort (n = 40)	Multiple-Dose Cohort (n = 36)	
Use in First Hour	7.5%	0%	
Use after First Hour	NA	8.3%	

SAP302: Safety Adverse Events (> 2% of patients)

Majority of patients experienced no side effects

Adverse Event, n (%)	ARX-04 (30 mcg) n=76
No Adverse Event	79%
Nausea	9%
Somnolence	5% ¹
Vomiting	4%
Oxygen Desaturation	3% ²

Only 2 of 76 patients had a drop on the SIS at one hour compared to baseline (6 >> 5; 5 >> 4)

1. All 4 patients with somnolence were rated as mild

2. Two patients experienced transient room air oxygen desaturations below 95% (88% and 94% which immediately improved with nasal cannula oxygen)

ARX-04: Positive Phase 3 Data in the Treatment of Moderate-to-Severe Acute Pain

- Single dose of ARX-04 30 mcg results in approximately a 3-point drop in pain intensity within 60 minutes, with clinically meaningful analgesia in < 20 minutes¹
- ARX-04 is well-tolerated in post-surgical and emergency medicine patients, with no evidence of cognitive impairment reported.
- ARX-04 is still investigational, but if approved, could offer an analgesic alternative to IV/IM or PO opioid dosing
- Additional research is indicated to assess safety and efficacy in burn patients, specifically through the various stages of treatment and rehabilitation

Thank you

Karen DiDonato

kdidonato@acelrx.com